a Paper No. 93-3050

AN ASAE/CSAE MEETING PRESENTATION

NEURAL NETWORK CLASSIFICATION OF UNDAMAGED AND
DAMAGED PEANUT KERNELS USING SPECTRAL DATA

by

Floyd E. Dowell
Agricultural Engineer
USDA, ARS, National Peanut Research Laboratory
Dawson, Georgia, USA

Written for presentation at the
1993 International Summer Meeting
sponsored by
THE AMERICAN SOCIETY OF AGRICULTURAL ENGINEERS
THE CANADIAN SOCIETY OF AGRICULTURAL ENGINEERING

Spokane Center
Spokane, Washington
20-23 June 1993

SUMMARY:

In order to improve the accuracy of measuring peanut quality in grade samples, a neural network
(NN) was used to classify undamaged and damaged peanut kernels using spectral reflectance data
from 400 nm to 700 nm. Results showed kernel classifications were best, network errors
minimized, and speed of convergence greatest when the NN was set up with 20 or more hidden
nodes, and trained with a learning rate of 0.9, a momentum of 0.43 or less, and using 520,000
or more learning events.
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INTRODUCTION

Trained inspectors visually inspect approximately 600,000 samples of farmers’ stock peanuts
(Arachis hypogaea, L.) each year for damaged peanut kernels in addition to determining other
quality factors, The complete inspection process includes mechanically cleaning, shelling, and
sizing a 500 g sample of peanuts in preparation for the visual inspection. During the visual
inspection, the inspector examines each peanut greater than 6.35 mm in diameter for
discolorations or insect damage, and all peanuts for fungal damage. Freczing temperatures,
excessive heat during drying, insect damage, and fungal damage are among the factors that
adversely affect peanut quality and typically result in a discoloration on the surface of the peanut
kernel. The inspectors receive about two days of training before the beginning of each farmers’
stock harvest season and are provided with color charts to aid in the damaged kernel
classification. Certain types of damage categories require the kernel be more than 25%
discolored before the kernel is considered damaged (USDA, 1991). Certain damage types, such
as the presence of Aspergillus flavus, or excessive amounts of some damage types, such as
freeze damage, can result in a reduction in the load value by about 75% (USDA, 1992). Some
damage sources, such as damage due to insects, provide a means for the invasion of A. flavus
which can produce aflatoxin, a suspected carcinogen. Thus, it is important that damaged kernels
be accurately and consistently identified to insure the seller and buyer receive or pay a fair price
for the peanuts and to insure that peanuts at risk for containing aflatoxin are accurately identified
for subsequent segregation.

Previous research shows the inaccuracies in the present grading system, some of which are due
to inspector subjectivity. Dowell (1992a) estimated that inspector subjectivity contributed to
about 24% of the total error in grading peanuts. Other research shows there are errors
associated with using visual damage assessments to segregate edible from inedible peanuts
(Blankenship and Dorner, 1991). Proper segregation is important to prevent mixing aflatoxin
suspect peanuts with good peanuts. When aflatoxin suspect peanuts are mixed with good
peanuts, subsequent cleanup to reduce aflatoxin to safe levels can cost about 50% of the value
of the peanuts and cleanup is becoming increasingly more difficult as consumers demand
tolerance levels be reduced. Thus, a means of accurately and consistently identifying damaged
kernels in grade samples 1s needed.

LITERATURE REVIEW

Previous research to remove subjectivity from determining damaged kernels concentrated on
gathering spectral and spatial information from the kernels. Dowell (1992b) correctly classified
63% of the damaged and 100% of undamaged kernels using a black and white machine vision
system which measured spectral and spatial information. Subsequent tests resulted in correct
classification of 79% of damaged and 100% of undamaged kernels using a colorimeter which
measured only spectral information. Correct kernel classifications were 93% for damaged and
99% for undamaged when sclected wavelengths between 400 and 700 nm from a
spectrophotometer were used. However, even one A. flavus kernel can contaminate several tons
of peanuts and since undamaged kernels account for about 90% of the lot value, the
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classification of undamaged and damaged kernels needs further improvement. Thus, methods
of classifying kernels using the full spectral curve were investigated. The Kolmogorov-Smirnov
(KS) statistical test (Steel and Torrie, 1980) can be used to determine if lwo curves come from
the same population and was investigated but resulted in very poor kernel classifications
(Dowell, 1992b). The KS test is sensitive to peaks in the spectral curve, but is not sensitive to
where the peaks occur. Visual differences between undamaged and damaged spectral curves can
be noted, thus it was hypothesized that artificial intelligence techniques, such as neural networks,
may aid in kernel classifications.

Neural networks (NN) are artificial intelligence systems developed to simulate some of the
organizational principles found in the human brain (Bochereau et al., 1992). NN are particularly
effective when the data sets are large, there does not exist expertise in analyzing the data, and
the decision required is binary (Dyer, 1989) which is the case with classifying undamaged and
damaged peanut kernels. NN consist of processing elements (PE) that can consist of many
nodes. Each node can receive many inputs and computes a single output. These processing
elements are arranged in layers. Within a PE, each input is multiplied by a corresponding
weight. The products are summed and the PE’s outpul is computed from the sum via a transfer
function. The output is available as an input to any or all of the PE’s in the next layer.

During training, the NN output is compared to a target output and an error calculated. The
error is propagated backward from the output PE to the input PE. Weights at cach PE are
adjusted to minimize the error. The training cycle is repeated until the network error is
acceptably low. Back propagation leaming is the most common NN type used although it has
the drawbacks of being slow, requires much training, may exhibit temporal instability or
oscillate, and can become stuck at a local minima (Nelson and Illingworth, 1991).

The variables that affect the error and the training speed of the NN are the number of learning
events, the learning rate, momentum, and number of nodes. The number of learning events
required to train a NN varies with the problem. Too few learning events results in inadequate
learning of the training data while too many learning events results in memorization of the
training data and poor performance with new data. The learning rate of the NN determines how
much of the error to propagate back into the proceeding nodes and affects the speed of
convergence of the network. A lower learning rate may be slow but more accurate, whereas
a higher learning rate may not converge. The momentum of a2 NN determines how much the
node weights should be changed in subsequent steps (Nelson and Illingworth, 1991). A
mathematically rigorous description of a NN can be found in other publications such as those
by Nelson and Hlingworth (1991) or Rigney and Kranzler (1989).

No single NN works best for all situations and no rigid guidelines exist for selecting the optimal
neural network configuration or parameters. These parameters depend on the application and
may be determined and optimized expenmentally.

Neural networks are finding commercial application in such areas as canceling noise in
telecommunications, mortgage risk evaluation, bomb detection at airports, process control, and



component checking (Nelson and Illingworth, 1991; Dyke, 1989). Research is ongoing in the
agricultural sector to apply NN to quality evaluation. Thai and Shewfelt (1990) used NN to link
human sensory judgments to physical measurements of external color for tomato and peach.
Zhuang and Engel (1990) showed NN can replace expert systems in such applications as
herbicide selection or selecting grain marketing alternatives. Thai et. al (1991) used NN to
estimate green tomato maturity from X-ray computed tomography images. Whilttaker et. al
(1991) used NN to grade beef, Rigney and Kranzler (1989) used NN to grade pine tree
seedlings, and Brons et al (1991) used NN to evaluate potted plant beauty. The success of the
above NN applications warrants research into the application of NN to classify undamaged and
damaged peanuts using spectral information. Thus, the objective of this research was to
investigate the use of NN to utilize all spectral information from 400 to 700 nm to classify
damaged and undamaged peanut kernels.

PROCEDURES

DATA COLLECTION

Spectral curves were obtained from approximately 600 damaged and 200 undamaged kernels
selected from the 1989 and 1990 crop years. Kemels were stored in banks for later reference.
Kernel damage was of the following types: black spots, entirely black, brown, insect holes, A.
flavus, white mold, purple seed coats, yellow discolorations, and freeze damage. Undamaged
categories consisted of visibly good redskin and blanched kernels.

The spectral curves were collected using a X-Rite 968 reflectance spectrophotometer which
measured kernel spectral reflectance from 400 nm to 700 nm in 10 nm intervals. The
spectrophotometer specifications include a O degree illumination angle, 45 degree viewing angle,
and an 8 mm diameter target window. The damaged areas filled the target window in most
cases. Each side of each kemel was hand placed over the target window, thus a total of 1200
spectras from damaged kernels and 400 spectras from undamaged kernels were collected. Each
spectra was treated as a separale kernel, thus essentially doubling the amount of kernel
information in the data set. If one side of a damaged kernel appeared undamaged, then that
spectra was treated as an undamaged kernel spectra. The damaged kernel data was combined
into one data set and compared to the combined undamaged redskin and blanched data set. CIE
illuminant C was used to calibrate the meter. The data was stored in an ASCII file for
subsequent analysis.

NEURAL NETWORK

A back propagation NN was developed using the NeuralShell software package. Relative
reflectance at 10 nm increments was used as input to 31 nodes in the input layer. Training
proceeded until manually terminated or until the NN converged to a user-selected error.
NeuralShell allows the number of nodes, number of layers, learning rate, learning events, and
momentum to be varied. The NN was a fully connected, feed forward, supervised network, and
used a sigmoid transfer function. The NN output threshold was set 1o 0.50 and the learning
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threshold was set to 0.0001. A kernel was classified as undamaged 1f the oulput was greater
than 0.50 and damaged otherwise.

Thai and Shewfelt (1990), Rigney and Kranzler (1989), and Bochereau et al. (1992) showed no
benefit of using more than one hidden layer. Thus, we used only one hidden layer in this study.
Nelson and Illingworth (1991 ) noted NN parameters such as learning rate, number of nodes in
the hidden layer, momentum, and learning events must be determined experimentally, thus a
study was designed to examine the effects of these parameters on the accuracy of classifying
undamaged and damaged peanut kernels. Table 1 shows the values for cach parameter tested.
Each NN run was terminated by the user when the number of learning events exceeded the
desired number listed in Table 1. The NN program selects one tenth of the total data set for the
test data set. This data set was used for all tests. Approximately 1400 spectras were used for
training. Forty-four un damaged and 112 damaged kernel spectras were used for testing
classification error. The accuracy of the NN when classifying these 156 kernels was compared
to the classification accuracy of previous techniques reported by Dowell (1992b) which used
magnitudes of and line slopes between three statistically selected wavelengths and

colorimeter tristimulus values.

Comparisons between variables were made using SAS (1987) statistical analysis software. The
three levels of the four variables resulted in 81 possible combinations. When determining the
effects of the three levels of a given variable on the classification accuracy, the results from the
other three variables were averaged together resulting in 27 observations for each level of each
variable. Likewise, the interaction between two variables was compared by averaging the
remaining two variables resulting in 9 observations for each interaction. An interaction of three
variables resulted in 3 observations for each comparison.

RESULTS AND DISCUSSION

Table 2 shows the percentage of undamaged and damaged kernels correctly classified, the
network error, and the number of learning events at convergence for each level of each variable.
The best classifications and smallest network errors occurred on test numbers 68 and 69 when
using 40 nodes, a learning rate of 0.6, a momentum of 0.45, and greater than about 500,000
learning events. These combinations resulted in correct classification of §7.82% of all kernels,
a network error of 0.036, and converged after 269,000 learning events. Test numbers 41 and
472 had about 86% correct classification. The only difference being that tests 41 and 42 used 20
nodes and had slightly higher network errors.

Table 3 shows the statistical comparison of the levels of each variable. The data shows that the
correct classification of undamaged kernels increased and network error decreased as the number
of nodes increased to 20 and leveled off thereafter. [n addition, more learning events resulted
in significantly better (P=0.05) classification of undamaged kernels, significantly better total
classification, and resulted in significantly lower network error. Momentums less than 0.9 had
significantly lower network errors. Learning rate did not have a significant effect on kernel
classification or network error.



Table 4 shows the significance of each variable and of each interaction. The significant effect
(P < =0.05) of the number of nodes, learning events and momentum on network errors shown
in Table 3 is again shown by the probability values in Table 4. By itself, learning rate had no
significant affect on classifications. This observation was also noted by Thai and Shewfelt
(1990) who reported no effect of learning rate on neural network performance. Several
interactions were significant (P < =0.10) but no clear conclusions could be drawn except for the
fact that the interaction of nodes and learning rate was significant for all kernel categories and
for network error. All variables contributed to at least one significant interaction when
combined with other variables.

Next, linear and quadratic lines were fit to the data to further study the trends in the data. Table
5 shows the coefficients of determination (R?) for each variable. All R? values were less than
0.30. This shows that any one variable accounts for less than 30% of the total variation. The
R? values improve some with some quadratic analyses, but are all still less than 0.30. The
number of nodes received consistent benefit from the quadratic regression applied to the kernel
classifications and to the network error. ‘This further supports the means in Table 3 which
shows, for undamaged kernels and for network error, that classifications and errors improve as
nodes increase to 20, then classifications do not improve further. Thai et al. (1991) also noted
that classification accuracy increased as the number of nodes increased to 4, then accuracy
decreased. Nelson and Illingworth (1991) also described this quadratic effect of nodes on
classifications by noting that too many nodes in the hidden layers make it hard for the network
to generalize. Too few nodes leads to an inability to form adequate midway representations and
to encode what the network thinks are significant features of the input data. The small
improvements in learning events linear and quadratic R? values for undamaged and total kernels
further support the significant differences and linear trends seen in Table 3. A stepwise linear
regression shows that combining all variables improves the R? value only to 0.128, 0.029, 0.099
and 0.442 for undamaged kernels, damaged kernels, total kernels, and network error,
respectively.

Table 6 shows the effect of the variables on the speed of convergence for the different number
of learning events. Convergence occurred when the minimum error was reached for a specific
number of leamning events. For 26,000 learning events, the speed of convergence increased as
nodes increased. For 1,000,000 leaming events, speed of convergence increased as momentum
and learning rate increased. It should be noted that although convergence was reached when
trained with only 26,000 learning events, Table 3 shows significantly less network error and
significantly better kernel classifications when trained with 520,000 or more learning events.

A comparison of the results from this NN to previous research where kernels were classitied
using statistically selected wavelengths and line slopes from data obtained using a
spectrophotometer and using L* a* b* color space values from a colorimeter 1s shown in Table
7. The procedures used to collect this data are reported by Dowell (1992b). The same kernels
were used in the three studies so direct comparisons could be made. Table 7 shows the NN
classified undamaged, damaged, and total kernels better than the colorimeter method and
classified damaged and total kernels better than the 3 wavelength method. The total kernel



classifications for the NN were about 5% better than the colorimeter method and about 13%
better than the 3 wavelength method. This improvement of NN over statistical techniques is
similar to those reported by Bochercau et al. (1992), Whittaker et. al (1991), and Brons et al.
(1991).

Future research will focus on separating the undamaged and damaged categories into subgroups
including undamaged blanched, undamaged redskins, purple, black, brown, etc. to see which
categories can be predicted with the most accuracy.

SUMMARY

Results showed that kernel classifications were best, network errors minimized, and speed of
convergence greatest when the NN was set up with 20 or more nodes, used with a momentum
of 0.45 or less, trained with 520,000 or more learning events, and when used with a learning
rate of 0.9. The learning rate did not affect the NN performance but did affect the speed of
convergence. The two most accurate kernel classifications NN settings occurred when the NN
parameters were set at 40 nodes, a learning rate of 0.6, a momentum of 0.45, and learning
events of 520,000 or 1,000,000. These settings resulted in a minimum network error of 0.036
and 87.82% of all kernels correctly classified. Convergence at this setting occurred at 269,000
learning events. When compared to statistical means of classifying kemnels using data from
specific wavelengths or data from a colorimeter, the NN correctly classified about 5% and 13%
more kernels, respectively, than the two other methods. '
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Table 1. Neural Network variables used to classify undamaged and damaged peanut kernels.

S—

Number of Hidden Layer Nodes 1 20 40
Learning Rate 0.1 0.6 0.9
Momentum 0 0.45 0.9
Leamning Events ~26,000 ~ 520,000 ~ 1,000,000
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Table 3. Comparison of three levels of four variables of a neural network trained on 400
undamaged peanut kernels and 1200 damaged kernels and used to classify 44 good
kernels and 112 damaged kernels.

Variable Undamaged Damaged Total Minimum
Average Average Average Network
Correct (%)" Correct (%)" Correct (%)’ Error?
No. Nodes
1 36.1b 92.1a 74 2a 0.05821a
20 46.9a 83.9a 73.4a 0.04947b
40 41.7ab 90.4a 74.8a 0.05012b
Learning Rate
0.1 37.0a 91.1a 73.8a 0.05313a
0.6 43.2a 91.1a 75.7a 0.05292a
0.9 44 5a 86.3a 72.9a 0.05174a
Momentum _
0 41.8a 90.9a 75.2a 0.05154b
0.45 46.2a 88.4a 74.9a 0.05106b
0.9 36.8a 89.2a 72.4a 0.05520a
‘Learning Events
26,000 32.8b 91.1a 72.4b 0.05838a
520,000 43.6a 87.7a 73.6ab 0.05012b
1,000,000 48.3a 89.7a 76.5a 0.04930b

'Means for each variable in columns followed by the same letter are not significantly different
at P=0.05.
*Network error is the difference between the expected and actual outputs.
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Table 4. Probability of a larger F (PR >F) for each variable and for all interactions of a neural
network used to classify undamaged and damaged peanut kernels.

Variable Undamaged Damaged Total Minimum
Average Average Average Network
Correct Correct Correct Errorl
(PR=F) (PR>F) (P> F) (PR=F)
No. Nodes (N) 0.33 0.62 0.72 0.01
Momentum (M) 0.38 0.61 0.11 0.03
Learning Rate (LR) 0.17 0.20 0.80 (.43
Learning Events (LE) 0.01 0.68 0.02 0.01
N*LR 0.01 0.05 0.06 0.02
N*M (.31 0.43 0.40 0.19
N*LE 0.56 0.56 0.57 0.04
LR*M 0.50 0.62 0.08 0.30
LR*LE 0.05 0.12 0.29 0.72
M*LE (.09 0.27 0.80 0.04
N*LR*M 0.01 0.11 0.09 0.01
LR*M*LE 0.29 0.61 0.15 0.11
N*LE*M 0.33 0.71 0.70 0.01
N*LR*LE 0.06 0.29 0.15 (.01

INetwork error is the difference between the expected actual outputs.
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Table 5. Linear and quadratic R? values for each variable tested in a neural network used to
classify undamaged and damaged peanut kernels.

Minimum
MNetwork
Undamaged Damaged Total! Error’
Variable R? R? R? R2
Modes
Linear 0.011 0.003 (.002 0.175
Quadratic 0.042 0.046 0.008 0.258
Learning Rate
Linear 0.022 0.021 (.001 0.0035
Quadratic (.023 0.033 0.033 0.006
Momentum .
Linear 0.009 0.003 0.031 0.037
Quadratic 0.032 0.007 0.037 0.056
Learning Events
Linear 0.087 0.002 0.065 0.226
Quadratic 0.091 0.013 0.069 0.274

'Network error is the difference between the expecled and actual outputs.



Table 6. Speed of convergence of a neural network used to classify damaged and undamaged
peanut kernels. Values shown are the number of learning events undergone when the
minimum network error was reached.

Total Number of Learning Events During Training

Variable 26,000 520,000 1,000,000'
No. Nodes
1 13867a 352580a 490039a
20 13000ab 283556a 4445506a
40 5467b 365956a 574978a
Momentum
0 13272a 424161a 7789564
0.45 9033a 340467a 379406b
0.9 12028a 237472a 351211b
Leamning Rate
0.1 9339a 370978a 623156a
0.6 11300a 395822a 646450a
0.9 1369442 235300a 239967b

"Means for each variable in columns followed by the same letter are not significantly different
at P=0.05.
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Table 7. Damaged and undamaged peanut kernel classification accuracy of: 1) a neural network
which utilized all wavelengths from 400 to 700 nm in 10 nm increments; 2)
statistically selected line slopes and magnitudes of reflectance at 450, 520, and 670 nm;
and 3) colorimeter L* a* b* values.

Method of Undamaged Damaged Total
Classification Correct (%) Correct (%) Correct (%)
1) Neural Network' 82.00 90.57 87.82
Statistics

2) 3 wavelengths 98.00 63.21 74.36

3) Colorimeter (L*a*b*) 78.00 84.91 82.98

'Network parameters were nodes=40, learning rate=0.6, momentum =(.45, and learning events
of 520,000 or 1,000,000.
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